データサイエンスとは?目的や将来性・活用事例などをわかりやすく解説
東京情報デザイン専門職大学では、データサイエンスを学習できます。しかし、「どのような学問なのか」「将来性があるのか」と疑問に思う方もいるのではないでしょうか。
データサイエンスとは膨大なデータを収集・分析し、ビジネスにおいて新しい価値を創造する研究のことです。情報処理能力や統計知識、人工知能を用いて集積したデータを解析し、企業の成長につなげていきます。
さまざまな業界で導入されているため、注目を集めているため将来性の高い学問だといえるでしょう。
本記事では、データサイエンスの概要や業界別の活用事例を解説します。また、データサイエンスを取り扱う仕事の業務内容や資格についてもみていきましょう。
TIDのオープンキャンパス・学校説明会はこちら ▶️ |
記事の概要
データサイエンスとは
データサイエンスとは、ビッグデータをはじめとした情報量の多いデータなどを分析・解析したうえで、事業内における有益な意思決定やマーケティング施策検討を導き出すための研究を指します。
統計学や数学、プログラミングなどの知識を用いるだけでなく、近年ではAIを活用した研究も増えてきています。AIを活用したデータサイエンスでは、効果的な学習・予測モデルを構築し、戦略を立てるために必要なデータを取得可能です。
そのため、インターネットが普及した昨今ではその重要性は増しており、事業戦略の策定やマーケティング施策などを検討する際に、データサイエンスを活用している企業が増えています。
データサイエンスによって問題を解決に導く「データサイエンティスト」は、プログラミング言語であるPythonをはじめ、AIの機械学習やディープラーニングの知識も必要となります。
データ収集から分析だけでなく、活用方法など対象となる範囲が広い点が特徴です。代表的なスキルとしては以下3つが重視されます。
- 情報処理技術
- 統計知識
- 価値創造
それぞれについて詳しくみていきましょう。
TIDのオープンキャンパス・学校説明会はこちら ▶️ |
情報処理技術
情報処理技術とは、データを解析するために必要な環境やシステムを構築する技術のことです。データを抽出・加工し、現場や顧客が使用できる内容に変化させ、新しい価値やサービスの創出につなげます。
データを格納できる容量の増加やコンピューターの処理能力の向上によって、データサイエンスではビッグデータも活用できるようになりました。
統計知識
統計知識とはデータサイエンスの軸となる概念です。データの分析や解析の方法をさします。膨大なデータから法則や傾向を導き出す際に使用されます。
また、データを可視化できる表やグラフなどを作成することも統計知識の一部です。分析したデータを現場で活用するためにわかりやすく可視化することで、データの重要性を伝えやすくなります。
価値創造
データサイエンスはデータ解析のみではありません。データの解析結果を活用し、新たな価値を創ることが目的です。社会が企業に求めている価値を理解した上で分析方法を決めなければなりません。
また、データサイエンスは人材育成の最適化、金融業界では、申し込み審査や広告制作物の校閲・校正などの分野で役立っています。
データ分析方法を決める際には分析対象となる業界やビジネスモデルだけでなく、市場や競合他社の動向を理解することが大切です。
データサイエンスの目的
データサイエンスは、膨大なデータを収集・解析し新しい価値を導き出すことが目的です。
統計学やプログラミングの知識を用いて、集積したデータから新しいアイディアを創造します。データを解析することで、別視点から今まで見えてこなかった企業の課題を見つけ出せるでしょう。
新しいアイディアや課題解決は企業のビジネスを成長させるキッカケとなります。加えて、激しく変化する市場において他社と競争できるように、従来までのビジネスモデルに変化をもたらすケースもあります。
このように、データサイエンスは企業のビジネスモデルや競争力に大きな影響を与える学問だといえるでしょう。
データサイエンスの種類
データサイエンスにおいて分析されたデータは以下3つの活用方法があります。
- データ収集・グラフ化
- 予測
- 人工知能
ここでは、それぞれの活用方法をみていきましょう。
データ集計・グラフ化
膨大なデータを集計・グラフ化します。集積された膨大なデータを分析せずに、課題を解決しようとしても上手く活用できません。
データを集計し、現場で活用できる形にすることが大切です。そのためにはデータの集計だけでなく、現場の人間でも一目でわかるようにグラフに置き換えます。
予測
データサイエンスではデータ活用による統計的な予測が可能です。さらにAIによる機械学習では精度の高い予測もできるでしょう。
従来のデータ分析と比較すると、最新のアルゴリズムや手法を用いて正確な予測を行うことが可能です。
人工知能
人工知能(AI)のディープラーニングによって非構造化データを解析できます。非構造化データとは画像や文章、動画など数字では測れないデータのことです。
従来のデータ分析の手法では、非構造化データの解析は困難でした。しかし、人工知能を活用することで、人工知能(AI)モデルの作成やパラメータの調整が可能となります。
データサイエンスの将来性
データの重要性が再確認されているため、データサイエンスは大きな注目を集めています。
スマートフォンやSNSの普及によってデジタル化が加速し、あらゆる情報を収集・活用できるようになりました。企業には膨大なデータが集積されています。集積された膨大なデータをビジネスに活かすためには収集や分析、可視化できるスキルが必要となります。
従来ではデータサイエンスが活用されているのは限られた分野のみでした。しかし、近年ではIT業界だけでなく、製造や物流、医療などの幅広い業界においてデータサイエンスの需要が高まってきています。
データサイエンスの事例
エンターテイメントや飲食をはじめ、金融、小売業界などさまざまな業界で活用されています。ここからは、業界別の活用事例をみていきましょう。
エンターテイメント
エンターテイメント業界ではオンラインゲームでのユーザー動向の分析にデータサイエンスを活用しています。ユーザーの課金履歴を収集・分析し、今後の戦略策定の検討材料として使用します。
国内のテーマパークでの導入事例をみていきましょう。データを活用し運営に取り組む施設もあります。テーマパーク内にセンサーの設置やスマートフォンアプリのGPSなどで、顧客の動向を徹底的に分析しています。
例えば、顧客が乗ったアトラクションや購入した商品などのデータを毎日収集することが可能です。分析したデータを元に、顧客の満足度向上を実現しました。
飲食業界
飲食業界ではオンライン決済や電子マネーなどの利用によって顧客の購買行動や来店履歴などの分析が可能となりました。
顧客が来店する曜日や時間帯、購入金額を分析し、スタッフや仕入れ食材の調整に役立てます。人的コスト・食品ロスや欠品による機会損失の削減につながるでしょう。
回転寿司チェーンでは寿司の皿にICチップを付け、寿司の鮮度や売上を確認しています。加えて、全国の店舗からもデータを収集・分析できるようになりました。全国から集積された膨大なデータを分析し、需要の予測を行っています。
金融業界
金融業界ではデータサイエンスを活用することで、安心して取引できる環境を整えられるようになりました。例えば以下のようなシーンで活用されます。
- 株式市場においてリアルタイムの知見が得られる
- 不正の検出や対策を実施する
- 返済を延滞する可能性がある人を予測する
- 投資やローンのリスクを可視化し、資産形成をサポートする
過去に行われた株取引や為替のデータだけでなく、リアルタイムの経済指標を組み合わせることで株価や為替の予測ができるようになりました。
短期的な予測だけでなく長期的な予測も可能になったため、株を売買するタイミングを教えてくれるサービスも提供し始めています。運用負担を軽減しリスクを回避できるため、顧客の囲い込みを期待できるでしょう。
証券取引等監視委員会の導入事例をみていきます。証券取引等監視委員会は金融庁の審議会です。インターネット上での不正取引の摘発強化にデータサイエンスを活用しています。
SNSなどへの書き込みデータを活用し、全体の動きとは流れが異なる銘柄を探索・調査していきます。株価の動きの予測や顧客の支援だけではありません。金融取引における不正を検出するシーンでもデータサイエンスは注目されています。
小売業界
小売業界では売上や販売情報を即座に処理できるPOSレジを導入することで、顧客の購買動向の集積をはじめ在庫や発注管理などに活用しています。顧客の購買動向に適した需要の変化を予測可能です。
オンラインショッピングやECサイトでのマーケティング分析にも役立つといえるでしょう。オンライン上での顧客動向や購買履歴のデータを収集し、商品が売れた理由を分析します。購入理由を分析することで、顧客に応じたクーポンやサービスを提供するといったマーケティング施策を実施できるようになりました。
保険業界
保険業界では以下のようなシーンにおいて、データサイエンスが活用されています。
- DM送付時の成約確率を予測する
- 医療保険の査定基準を分析・見直しを行う
データサイエンスを活用し、DM送付対象を絞り込むことが可能です。顧客リストに勧誘のDMを大量に送付するものの、成約率は高くありません。顧客全員にDMを送付するとコストの負担が大きくなってしまいます。
データサイエンスによって、これまでの顧客データを分析し成約しやすい顧客のみにDMを送付できるようになりました。コストの負担が減り、成約数の拡大が期待できます。
データサイエンティストとは
ここからは、データサイエンスを業務として扱うデータサイエンティストについて詳しくみていきましょう。ビッグデータの活用を行う場合に必須な業種といえます。
仕事内容
統計学やトレンドなどの要素を用いて、ビッグデータなどから必要なデータを収集し、分析したデータを人材育成や課題解決に役立てる業務です。
次のように、新規システムの開発などにおいて実装から改善、アドバイスまで行うケースだけでなく、幅広い業務内容となっているケースもあります。
- 分析したデータからわかることをわかりやすく伝える
- 業務革新につながるDX(デジタルトランスフォーメーション)やAIを活用する場合にどのような体制が必要なのか組織に提言する
- 目的を定め、その課題に対してどのようなデータが必要なのか定義して集める
- 統計情報に対して数理最適化など様々な手法を用いて関連性を見つける
- 分析や解析方法について常にレベルアップを目指し、意識をたかめ、ビジネス課題の解決につなげる
顧客に現状の課題を聞き、データによって何が解決できるのかを提言するケースもあるため、コミュニケーション能力は必須です。また、データサイエンティスト自身が簡単なシステムを組み立て、クライアントに説明してPDCAを回し続けるといった働き方もあります。
論理的な思考に基づいてデータを解析・分析し、その結果を用いて更に改善していく向上心や課題解決能力も求められます。
データアナリストとの違い
データアナリストは、データの収集と分析が主な業務内容です。そのため、データ分析の結果をクライアントに分かりやすく伝えることが目標となります。企業が保有しているデータを分析し、そのデータがどのように役立つのかといったビジネス視点の業務が多くなるといえるでしょう。
データサイエンティストと比較した場合、データ解析を行う部分は同様であるものの、データアナリストは課題解決型のコンサルか、システム構築・改善のどちらかに分かれるケースが多いといえます。対して、データサイエンティストは高度なデータの分析・解析に加えて、現場で実装できるようなシステムの構築やアドバイスまで行います。
重複する部分もあるものの、データサイエンティストは総合的な課題解決のためのアドバイザー、データアナリストは企業によって分析かコンサル特化に分かれることになるといえるでしょう。
将来性
データサイエンティストの将来性は高いといえるでしょう。例えば、Webマーケティングだけに着目した場合でも、人々のニーズが変化したことからデータ分析面から新しいサービスや広告の提案が求められている状況です。
また、様々な商品を幅広く取り扱う商社や小売りなどの業界でもデータサイエンティストはニーズがあります。調達から消費までの一連の流れを表すサプライチェーン、二酸化炭素の排出量、日々の在庫の変化などもデータ分析による業務改善が求められているためです。
今後データを取り扱う企業がある限り、データサイエンティストのニーズは無くならないといえます。大企業だけでなく、中小企業においてもデータに基づいたシステムの導入、定期的なマーケティング戦略を立てる場合なども活躍の場はあります。
ただし、活躍できる場面が多いことから、様々な業界の知識を吸収し、レベルアップし続ける・常に最善の結果を導くといった意識が必要となる点は知っておきましょう。
必要なスキル
データサイエンティストに必要なスキルは以下になります。
- 課題解決も含めて論理的な整理ができるビジネス力
- データサイエンスを課題解決に変換するデータエンジニアリング力
- 情報処理、AIといった情報科学の知識を利用するデータサイエンス力
求められるスキルは多く、データを分析する能力だけでなく、対人スキルも求められます。例えば、これから実施したいサービスに対して必要なデータをクライアントが持っていない場合、どのようなデータが必要なのか・どのように収集するのかをデータサイエンティストが提案するケースも少なくありません。そのため、技術だけではなく、ビジネス課題の解決に対する提案力もスキルとして求められます。
また、結果からビジネスに対してどのような影響を与えられるのかを明確に伝える必要もあります。そのため、データサイエンティストは技術と対人、どちらの一定のスキルが必要となる責任ある業務です。
データサイエンスの資格
ここからは、データサイエンスに関連する資格についてみていきます。業務上必要となるケースはあまりないものの、転職やキャリアアップを狙う場合は取得を目指してみましょう。
データサイエンティスト検定
データサイエンティスト検定は、民間資格であるものの、データサイエンティストとしてのスキルを示せる資格です。ただし、現在は4つある難易度のうち、最も簡単なものしか受診できません。他の3つは今後、段階的に開放されていくと予想されます。6月、9月に試験が実施されています。
また、データサイエンティストを学び始めた方や他業界で学んだ方に向けた内容であるため、試験難易度は比較的易しいといえるでしょう。
情報技術者試験
ITエンジニアとして、基礎的な知識を網羅的にカバーしていることを証明できる資格試験の1つです。国家試験であり、プログラミングに対する知識も必要となります。平均合格率は25%で合格難易度が高い試験です。
しかし、スクールだけでなく独学でも取得可能であることから、しっかりとした対策ができれば合格は可能です。
データベーススペシャリスト試験
データベースの管理や意思決定などのアドバイザーに推奨できる国家資格です。アルゴリズム、システムの構成要素などデータベース以外の問題も出題されるため、普段からデータベースに関わっていても別途対策が必要となります。
データベースに関して、企画から実装後の運用・保守まで可能なスキルを持っている証明となる資格といえます。また、試験日には全部で4回の学科試験がある点も知っておきましょう。
データサイエンスを学ぶなら東京情報デザイン専門職大学
データサイエンスはデータの分析・解析を行い、解析結果を用いて新しい価値を企業にもたらす研究のことです。データサイエンスを学ぶことで、統計やこれまで企業で集積してきたデータを今後の戦略や事業に活かすことが可能となります。
また、データサイエンスを主体としたデータサイエンティストと呼ばれる職種がIT業界を筆頭に、医療や金融といった業界でも求められている状況です。東京情報デザイン専門職大学では、データサイエンスを基礎から学習し、データサイエンティストとして活躍するための専門的な知識を学ぶことができます。
最先端の考え方や理論を吸収し、データサイエンティストとして活躍したい場合、学校を選択する際の選択肢の1つにしてみましょう。
IT・AI・ゲーム業界に興味のある方へ!
東京情報デザイン専門職大学ではオープンキャンパス・学校説明会を開催しています!
オープンキャンパス・学校説明会
情報デザインを使う企業・業界から講師が来校。興味のある分野を選び「情報デザイン」の一歩を体験してみよう。